MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. C82000 Copper

AISI 304 stainless steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 8.0 to 43
8.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
350 to 690
Tensile Strength: Yield (Proof), MPa 230 to 860
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 710
220
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1400
970
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
260
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
46

Otherwise Unclassified Properties

Base Metal Price, % relative 15
60
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.0
5.0
Embodied Energy, MJ/kg 43
77
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 42
11 to 22
Strength to Weight: Bending, points 20 to 32
12 to 20
Thermal Diffusivity, mm2/s 4.2
76
Thermal Shock Resistance, points 12 to 25
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 66.5 to 74
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0 to 0.2
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5