MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. C86800 Bronze

AISI 304 stainless steel belongs to the iron alloys classification, while C86800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is C86800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.0 to 43
22
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
570
Tensile Strength: Yield (Proof), MPa 230 to 860
260

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 710
140
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1400
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 15
24
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.0
3.0
Embodied Energy, MJ/kg 43
51
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
100
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
310
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 42
20
Strength to Weight: Bending, points 20 to 32
19
Thermal Shock Resistance, points 12 to 25
18

Alloy Composition

Aluminum (Al), % 0
0 to 2.0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
53.5 to 57
Iron (Fe), % 66.5 to 74
1.0 to 2.5
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 4.0
Nickel (Ni), % 8.0 to 10.5
2.5 to 4.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
28.3 to 40.5
Residuals, % 0
0 to 1.0