MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. C99600 Bronze

AISI 304 stainless steel belongs to the iron alloys classification, while C99600 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is C99600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
150
Elongation at Break, % 8.0 to 43
27 to 34
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
56
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
560
Tensile Strength: Yield (Proof), MPa 230 to 860
250 to 300

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 710
200
Melting Completion (Liquidus), °C 1450
1100
Melting Onset (Solidus), °C 1400
1050
Specific Heat Capacity, J/kg-K 480
440
Thermal Expansion, µm/m-K 17
19

Otherwise Unclassified Properties

Base Metal Price, % relative 15
22
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.0
3.2
Embodied Energy, MJ/kg 43
51
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
210 to 310
Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 21 to 42
19
Strength to Weight: Bending, points 20 to 32
19
Thermal Shock Resistance, points 12 to 25
14

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.8
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
50.8 to 60
Iron (Fe), % 66.5 to 74
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
39 to 45
Nickel (Ni), % 8.0 to 10.5
0 to 0.2
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.3