MakeItFrom.com
Menu (ESC)

AISI 304Cu Stainless Steel vs. C18700 Copper

AISI 304Cu stainless steel belongs to the iron alloys classification, while C18700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 304Cu stainless steel and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 45
9.0 to 9.6
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 370
170 to 190
Tensile Strength: Ultimate (UTS), MPa 530
290 to 330
Tensile Strength: Yield (Proof), MPa 210
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 930
200
Melting Completion (Liquidus), °C 1410
1080
Melting Onset (Solidus), °C 1370
950
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 13
380
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
98
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
99

Otherwise Unclassified Properties

Base Metal Price, % relative 16
30
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 110
240 to 280
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
9.0 to 10
Strength to Weight: Bending, points 19
11 to 12
Thermal Diffusivity, mm2/s 3.5
110
Thermal Shock Resistance, points 12
10 to 12

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 3.0 to 4.0
98 to 99.2
Iron (Fe), % 63.9 to 72
0
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5