MakeItFrom.com
Menu (ESC)

AISI 304H Stainless Steel vs. ASTM A182 Grade F22V

Both AISI 304H stainless steel and ASTM A182 grade F22V are iron alloys. They have 73% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 304H stainless steel and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
21
Fatigue Strength, MPa 200
320
Poisson's Ratio 0.28
0.29
Reduction in Area, % 51
50
Shear Modulus, GPa 77
74
Shear Strength, MPa 400
420
Tensile Strength: Ultimate (UTS), MPa 580
670
Tensile Strength: Yield (Proof), MPa 230
460

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 960
460
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 15
4.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.0
2.5
Embodied Energy, MJ/kg 43
35
Embodied Water, L/kg 150
61

Common Calculations

PREN (Pitting Resistance) 19
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 130
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.5
11
Thermal Shock Resistance, points 13
19

Alloy Composition

Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0.040 to 0.1
0.11 to 0.15
Chromium (Cr), % 18 to 20
2.0 to 2.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 66.6 to 74
94.6 to 96.4
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 8.0 to 10.5
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35