MakeItFrom.com
Menu (ESC)

AISI 304H Stainless Steel vs. S40945 Stainless Steel

Both AISI 304H stainless steel and S40945 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 83% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 304H stainless steel and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
25
Fatigue Strength, MPa 200
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 79
69
Shear Modulus, GPa 77
75
Shear Strength, MPa 400
270
Tensile Strength: Ultimate (UTS), MPa 580
430
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 960
710
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
26
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 15
8.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.2
Embodied Energy, MJ/kg 43
31
Embodied Water, L/kg 150
94

Common Calculations

PREN (Pitting Resistance) 19
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
89
Resilience: Unit (Modulus of Resilience), kJ/m3 130
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 4.5
6.9
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 18 to 20
10.5 to 11.7
Iron (Fe), % 66.6 to 74
85.1 to 89.3
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 8.0 to 10.5
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.050 to 0.2