MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. ASTM A182 Grade F3V

Both AISI 304L stainless steel and ASTM A182 grade F3V are iron alloys. They have 73% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 350
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 6.7 to 46
20
Fatigue Strength, MPa 170 to 430
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Shear Strength, MPa 370 to 680
410
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
660
Tensile Strength: Yield (Proof), MPa 190 to 870
470

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 540
470
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 16
4.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.1
2.3
Embodied Energy, MJ/kg 44
33
Embodied Water, L/kg 150
63

Common Calculations

PREN (Pitting Resistance) 20
6.3
Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
120
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 41
23
Strength to Weight: Bending, points 19 to 31
21
Thermal Diffusivity, mm2/s 4.2
10
Thermal Shock Resistance, points 12 to 25
19

Alloy Composition

Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0 to 0.030
0.050 to 0.18
Chromium (Cr), % 18 to 20
2.8 to 3.2
Iron (Fe), % 65 to 74
94.4 to 95.7
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 8.0 to 12
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3