MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. EN 1.7367 Steel

Both AISI 304L stainless steel and EN 1.7367 steel are iron alloys. They have 79% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is EN 1.7367 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 350
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 6.7 to 46
18
Fatigue Strength, MPa 170 to 430
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
670
Tensile Strength: Yield (Proof), MPa 190 to 870
460

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Mechanical, °C 540
600
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 16
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.6
Embodied Energy, MJ/kg 44
37
Embodied Water, L/kg 150
88

Common Calculations

PREN (Pitting Resistance) 20
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
110
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 41
24
Strength to Weight: Bending, points 19 to 31
22
Thermal Diffusivity, mm2/s 4.2
6.9
Thermal Shock Resistance, points 12 to 25
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.030
0.080 to 0.12
Chromium (Cr), % 18 to 20
8.0 to 9.5
Iron (Fe), % 65 to 74
87.3 to 90.3
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 8.0 to 12
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0 to 0.1
0.030 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0.2 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010