MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. EN 2.4669 Nickel

AISI 304L stainless steel belongs to the iron alloys classification, while EN 2.4669 nickel belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is EN 2.4669 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 6.7 to 46
16
Fatigue Strength, MPa 170 to 430
390
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 370 to 680
680
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
1110
Tensile Strength: Yield (Proof), MPa 190 to 870
720

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Mechanical, °C 540
960
Melting Completion (Liquidus), °C 1450
1380
Melting Onset (Solidus), °C 1400
1330
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
60
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 3.1
10
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 150
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
160
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 19 to 41
37
Strength to Weight: Bending, points 19 to 31
28
Thermal Diffusivity, mm2/s 4.2
3.1
Thermal Shock Resistance, points 12 to 25
33

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 18 to 20
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 65 to 74
5.0 to 9.0
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 8.0 to 12
65.9 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
2.3 to 2.8