MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. EN AC-47000 Aluminum

AISI 304L stainless steel belongs to the iron alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 350
60
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 6.7 to 46
1.7
Fatigue Strength, MPa 170 to 430
68
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
180
Tensile Strength: Yield (Proof), MPa 190 to 870
97

Thermal Properties

Latent Heat of Fusion, J/g 290
570
Maximum Temperature: Mechanical, °C 540
170
Melting Completion (Liquidus), °C 1450
590
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
110

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.1
7.7
Embodied Energy, MJ/kg 44
140
Embodied Water, L/kg 150
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
65
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 19 to 41
19
Strength to Weight: Bending, points 19 to 31
27
Thermal Diffusivity, mm2/s 4.2
55
Thermal Shock Resistance, points 12 to 25
8.3

Alloy Composition

Aluminum (Al), % 0
82.1 to 89.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0 to 0.1
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 65 to 74
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0 to 2.0
0.050 to 0.55
Nickel (Ni), % 8.0 to 12
0 to 0.3
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
10.5 to 13.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25