MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. S44535 Stainless Steel

Both AISI 304L stainless steel and S44535 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 350
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 6.7 to 46
28
Fatigue Strength, MPa 170 to 430
210
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 79
77
Shear Modulus, GPa 77
78
Shear Strength, MPa 370 to 680
290
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
450
Tensile Strength: Yield (Proof), MPa 190 to 870
290

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 540
1000
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 16
11
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.4
Embodied Energy, MJ/kg 44
34
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 20
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
110
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 41
16
Strength to Weight: Bending, points 19 to 31
17
Thermal Diffusivity, mm2/s 4.2
5.6
Thermal Shock Resistance, points 12 to 25
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 18 to 20
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 65 to 74
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 2.0
0.3 to 0.8
Nickel (Ni), % 8.0 to 12
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2