MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. S44537 Stainless Steel

Both AISI 304L stainless steel and S44537 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 350
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 6.7 to 46
21
Fatigue Strength, MPa 170 to 430
230
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 79
80
Shear Modulus, GPa 77
79
Shear Strength, MPa 370 to 680
320
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
510
Tensile Strength: Yield (Proof), MPa 190 to 870
360

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 420
530
Maximum Temperature: Mechanical, °C 540
1000
Melting Completion (Liquidus), °C 1450
1480
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 16
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.1
3.4
Embodied Energy, MJ/kg 44
50
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 20
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
95
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 41
18
Strength to Weight: Bending, points 19 to 31
18
Thermal Diffusivity, mm2/s 4.2
5.6
Thermal Shock Resistance, points 12 to 25
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 18 to 20
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 65 to 74
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.8
Nickel (Ni), % 8.0 to 12
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0 to 0.1
0 to 0.040
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0.1 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0