MakeItFrom.com
Menu (ESC)

AISI 304LN Stainless Steel vs. 2025 Aluminum

AISI 304LN stainless steel belongs to the iron alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 350
110
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 7.8 to 46
15
Fatigue Strength, MPa 200 to 440
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 400 to 680
240
Tensile Strength: Ultimate (UTS), MPa 580 to 1160
400
Tensile Strength: Yield (Proof), MPa 230 to 870
260

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 960
190
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 16
10
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 3.1
7.9
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 150
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 270
55
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1900
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 21 to 41
37
Strength to Weight: Bending, points 20 to 31
40
Thermal Diffusivity, mm2/s 4.0
58
Thermal Shock Resistance, points 13 to 26
18

Alloy Composition

Aluminum (Al), % 0
90.9 to 95.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0 to 0.1
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 65 to 73.9
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0.4 to 1.2
Nickel (Ni), % 8.0 to 12
0
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.5 to 1.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15