MakeItFrom.com
Menu (ESC)

AISI 304LN Stainless Steel vs. 240.0 Aluminum

AISI 304LN stainless steel belongs to the iron alloys classification, while 240.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is 240.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 7.8 to 46
1.0
Fatigue Strength, MPa 200 to 440
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 580 to 1160
240
Tensile Strength: Yield (Proof), MPa 230 to 870
200

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 960
180
Melting Completion (Liquidus), °C 1420
600
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 15
96
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
65

Otherwise Unclassified Properties

Base Metal Price, % relative 16
12
Density, g/cm3 7.8
3.2
Embodied Carbon, kg CO2/kg material 3.1
8.7
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 150
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 270
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1900
280
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
43
Strength to Weight: Axial, points 21 to 41
20
Strength to Weight: Bending, points 20 to 31
26
Thermal Diffusivity, mm2/s 4.0
35
Thermal Shock Resistance, points 13 to 26
11

Alloy Composition

Aluminum (Al), % 0
81.7 to 86.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
7.0 to 9.0
Iron (Fe), % 65 to 73.9
0 to 0.5
Magnesium (Mg), % 0
5.5 to 6.5
Manganese (Mn), % 0 to 2.0
0.3 to 0.7
Nickel (Ni), % 8.0 to 12
0.3 to 0.7
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15