MakeItFrom.com
Menu (ESC)

AISI 304LN Stainless Steel vs. 364.0 Aluminum

AISI 304LN stainless steel belongs to the iron alloys classification, while 364.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 7.8 to 46
7.5
Fatigue Strength, MPa 200 to 440
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 400 to 680
200
Tensile Strength: Ultimate (UTS), MPa 580 to 1160
300
Tensile Strength: Yield (Proof), MPa 230 to 870
160

Thermal Properties

Latent Heat of Fusion, J/g 290
520
Maximum Temperature: Mechanical, °C 960
190
Melting Completion (Liquidus), °C 1420
600
Melting Onset (Solidus), °C 1380
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
100

Otherwise Unclassified Properties

Base Metal Price, % relative 16
11
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.1
8.0
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 150
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 270
19
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1900
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 21 to 41
31
Strength to Weight: Bending, points 20 to 31
38
Thermal Diffusivity, mm2/s 4.0
51
Thermal Shock Resistance, points 13 to 26
14

Alloy Composition

Aluminum (Al), % 0
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0.25 to 0.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 65 to 73.9
0 to 1.5
Magnesium (Mg), % 0
0.2 to 0.4
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 8.0 to 12
0 to 0.15
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15