MakeItFrom.com
Menu (ESC)

AISI 304LN Stainless Steel vs. 380.0 Aluminum

AISI 304LN stainless steel belongs to the iron alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 350
80
Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 7.8 to 46
3.0
Fatigue Strength, MPa 200 to 440
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Shear Strength, MPa 400 to 680
190
Tensile Strength: Ultimate (UTS), MPa 580 to 1160
320
Tensile Strength: Yield (Proof), MPa 230 to 870
160

Thermal Properties

Latent Heat of Fusion, J/g 290
510
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1420
590
Melting Onset (Solidus), °C 1380
540
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 15
100
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
83

Otherwise Unclassified Properties

Base Metal Price, % relative 16
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 3.1
7.5
Embodied Energy, MJ/kg 44
140
Embodied Water, L/kg 150
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 270
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1900
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 21 to 41
31
Strength to Weight: Bending, points 20 to 31
36
Thermal Diffusivity, mm2/s 4.0
40
Thermal Shock Resistance, points 13 to 26
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 65 to 73.9
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 8.0 to 12
0 to 0.5
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5