MakeItFrom.com
Menu (ESC)

AISI 304LN Stainless Steel vs. 7021 Aluminum

AISI 304LN stainless steel belongs to the iron alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 7.8 to 46
9.4
Fatigue Strength, MPa 200 to 440
150
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
26
Shear Strength, MPa 400 to 680
270
Tensile Strength: Ultimate (UTS), MPa 580 to 1160
460
Tensile Strength: Yield (Proof), MPa 230 to 870
390

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1420
630
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 3.1
8.3
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 270
41
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1900
1110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 21 to 41
44
Strength to Weight: Bending, points 20 to 31
45
Thermal Diffusivity, mm2/s 4.0
59
Thermal Shock Resistance, points 13 to 26
20

Alloy Composition

Aluminum (Al), % 0
90.7 to 93.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0 to 0.050
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 65 to 73.9
0 to 0.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 8.0 to 12
0
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15