AISI 304LN Stainless Steel vs. EN 1.6580 Steel
Both AISI 304LN stainless steel and EN 1.6580 steel are iron alloys. They have 74% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is EN 1.6580 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 190 to 350 | |
220 to 350 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 7.8 to 46 | |
11 to 19 |
Fatigue Strength, MPa | 200 to 440 | |
310 to 610 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 77 | |
73 |
Shear Strength, MPa | 400 to 680 | |
450 to 700 |
Tensile Strength: Ultimate (UTS), MPa | 580 to 1160 | |
720 to 1170 |
Tensile Strength: Yield (Proof), MPa | 230 to 870 | |
460 to 990 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
250 |
Maximum Temperature: Mechanical, °C | 960 | |
450 |
Melting Completion (Liquidus), °C | 1420 | |
1460 |
Melting Onset (Solidus), °C | 1380 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 15 | |
40 |
Thermal Expansion, µm/m-K | 16 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
7.8 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
8.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 16 | |
4.3 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 3.1 | |
1.8 |
Embodied Energy, MJ/kg | 44 | |
23 |
Embodied Water, L/kg | 150 | |
59 |
Common Calculations
PREN (Pitting Resistance) | 21 | |
3.3 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 83 to 270 | |
120 to 130 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 140 to 1900 | |
560 to 2590 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 21 to 41 | |
26 to 41 |
Strength to Weight: Bending, points | 20 to 31 | |
23 to 31 |
Thermal Diffusivity, mm2/s | 4.0 | |
11 |
Thermal Shock Resistance, points | 13 to 26 | |
21 to 34 |
Alloy Composition
Carbon (C), % | 0 to 0.030 | |
0.26 to 0.34 |
Chromium (Cr), % | 18 to 20 | |
1.8 to 2.2 |
Iron (Fe), % | 65 to 73.9 | |
93.7 to 95.5 |
Manganese (Mn), % | 0 to 2.0 | |
0.3 to 0.6 |
Molybdenum (Mo), % | 0 | |
0.3 to 0.5 |
Nickel (Ni), % | 8.0 to 12 | |
1.8 to 2.2 |
Nitrogen (N), % | 0.1 to 0.16 | |
0 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.75 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.035 |