AISI 304LN Stainless Steel vs. Titanium 15-3-3-3
AISI 304LN stainless steel belongs to the iron alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is titanium 15-3-3-3.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
100 |
Elongation at Break, % | 7.8 to 46 | |
5.7 to 8.0 |
Fatigue Strength, MPa | 200 to 440 | |
610 to 710 |
Poisson's Ratio | 0.28 | |
0.33 |
Shear Modulus, GPa | 77 | |
39 |
Shear Strength, MPa | 400 to 680 | |
660 to 810 |
Tensile Strength: Ultimate (UTS), MPa | 580 to 1160 | |
1120 to 1390 |
Tensile Strength: Yield (Proof), MPa | 230 to 870 | |
1100 to 1340 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
390 |
Maximum Temperature: Mechanical, °C | 960 | |
430 |
Melting Completion (Liquidus), °C | 1420 | |
1620 |
Melting Onset (Solidus), °C | 1380 | |
1560 |
Specific Heat Capacity, J/kg-K | 480 | |
520 |
Thermal Conductivity, W/m-K | 15 | |
8.1 |
Thermal Expansion, µm/m-K | 16 | |
9.8 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
1.2 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
2.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 16 | |
40 |
Density, g/cm3 | 7.8 | |
4.8 |
Embodied Carbon, kg CO2/kg material | 3.1 | |
59 |
Embodied Energy, MJ/kg | 44 | |
950 |
Embodied Water, L/kg | 150 | |
260 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 83 to 270 | |
78 to 89 |
Stiffness to Weight: Axial, points | 14 | |
12 |
Stiffness to Weight: Bending, points | 25 | |
32 |
Strength to Weight: Axial, points | 21 to 41 | |
64 to 80 |
Strength to Weight: Bending, points | 20 to 31 | |
50 to 57 |
Thermal Diffusivity, mm2/s | 4.0 | |
3.2 |
Thermal Shock Resistance, points | 13 to 26 | |
79 to 98 |
Alloy Composition
Aluminum (Al), % | 0 | |
2.5 to 3.5 |
Carbon (C), % | 0 to 0.030 | |
0 to 0.050 |
Chromium (Cr), % | 18 to 20 | |
2.5 to 3.5 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 65 to 73.9 | |
0 to 0.25 |
Manganese (Mn), % | 0 to 2.0 | |
0 |
Nickel (Ni), % | 8.0 to 12 | |
0 |
Nitrogen (N), % | 0.1 to 0.16 | |
0 to 0.050 |
Oxygen (O), % | 0 | |
0 to 0.13 |
Phosphorus (P), % | 0 to 0.045 | |
0 |
Silicon (Si), % | 0 to 0.75 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 |
Tin (Sn), % | 0 | |
2.5 to 3.5 |
Titanium (Ti), % | 0 | |
72.6 to 78.5 |
Vanadium (V), % | 0 | |
14 to 16 |
Residuals, % | 0 | |
0 to 0.4 |