MakeItFrom.com
Menu (ESC)

AISI 304LN Stainless Steel vs. C48200 Brass

AISI 304LN stainless steel belongs to the iron alloys classification, while C48200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is C48200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 7.8 to 46
15 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 400 to 680
260 to 300
Tensile Strength: Ultimate (UTS), MPa 580 to 1160
400 to 500
Tensile Strength: Yield (Proof), MPa 230 to 870
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 960
120
Melting Completion (Liquidus), °C 1420
900
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 44
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 270
61 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1900
120 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 41
14 to 17
Strength to Weight: Bending, points 20 to 31
15 to 17
Thermal Diffusivity, mm2/s 4.0
38
Thermal Shock Resistance, points 13 to 26
13 to 16

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 65 to 73.9
0 to 0.1
Lead (Pb), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 12
0
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
35.5 to 40.1
Residuals, % 0
0 to 0.4