MakeItFrom.com
Menu (ESC)

AISI 304LN Stainless Steel vs. C72150 Copper-nickel

AISI 304LN stainless steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 350
99
Elastic (Young's, Tensile) Modulus, GPa 200
150
Elongation at Break, % 7.8 to 46
29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
55
Shear Strength, MPa 400 to 680
320
Tensile Strength: Ultimate (UTS), MPa 580 to 1160
490
Tensile Strength: Yield (Proof), MPa 230 to 870
210

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 960
600
Melting Completion (Liquidus), °C 1420
1210
Melting Onset (Solidus), °C 1380
1250
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 16
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 16
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.1
6.1
Embodied Energy, MJ/kg 44
88
Embodied Water, L/kg 150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 270
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1900
150
Stiffness to Weight: Axial, points 14
9.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 41
15
Strength to Weight: Bending, points 20 to 31
15
Thermal Diffusivity, mm2/s 4.0
6.0
Thermal Shock Resistance, points 13 to 26
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
52.5 to 57
Iron (Fe), % 65 to 73.9
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.050
Nickel (Ni), % 8.0 to 12
43 to 46
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5