MakeItFrom.com
Menu (ESC)

AISI 304LN Stainless Steel vs. R30556 Alloy

Both AISI 304LN stainless steel and R30556 alloy are iron alloys. They have 60% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 7.8 to 46
45
Fatigue Strength, MPa 200 to 440
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
81
Shear Strength, MPa 400 to 680
550
Tensile Strength: Ultimate (UTS), MPa 580 to 1160
780
Tensile Strength: Yield (Proof), MPa 230 to 870
350

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 960
1100
Melting Completion (Liquidus), °C 1420
1420
Melting Onset (Solidus), °C 1380
1330
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 16
70
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 3.1
8.7
Embodied Energy, MJ/kg 44
130
Embodied Water, L/kg 150
300

Common Calculations

PREN (Pitting Resistance) 21
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 270
290
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1900
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21 to 41
26
Strength to Weight: Bending, points 20 to 31
22
Thermal Diffusivity, mm2/s 4.0
2.9
Thermal Shock Resistance, points 13 to 26
18

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.030
0.050 to 0.15
Chromium (Cr), % 18 to 20
21 to 23
Cobalt (Co), % 0
16 to 21
Iron (Fe), % 65 to 73.9
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Manganese (Mn), % 0 to 2.0
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 8.0 to 12
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0.1 to 0.16
0.1 to 0.3
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0
0.0010 to 0.1