MakeItFrom.com
Menu (ESC)

AISI 304N Stainless Steel vs. AWS E80C-B2

Both AISI 304N stainless steel and AWS E80C-B2 are iron alloys. They have 73% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 304N stainless steel and the bottom bar is AWS E80C-B2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.1 to 45
22
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 620 to 1180
630
Tensile Strength: Yield (Proof), MPa 270 to 850
530

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
3.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.6
Embodied Energy, MJ/kg 43
22
Embodied Water, L/kg 150
53

Common Calculations

PREN (Pitting Resistance) 21
3.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 280
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1830
740
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22 to 42
22
Strength to Weight: Bending, points 21 to 32
21
Thermal Diffusivity, mm2/s 4.2
11
Thermal Shock Resistance, points 14 to 26
18

Alloy Composition

Carbon (C), % 0 to 0.080
0.050 to 0.12
Chromium (Cr), % 18 to 20
1.0 to 1.5
Iron (Fe), % 66.4 to 73.9
95.3 to 97.9
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 8.0 to 10.5
0 to 0.2
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.75
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5