MakeItFrom.com
Menu (ESC)

AISI 304N Stainless Steel vs. EN 1.8864 Steel

Both AISI 304N stainless steel and EN 1.8864 steel are iron alloys. They have 72% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 304N stainless steel and the bottom bar is EN 1.8864 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 360
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.1 to 45
22
Fatigue Strength, MPa 220 to 440
320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 420 to 700
380
Tensile Strength: Ultimate (UTS), MPa 620 to 1180
610
Tensile Strength: Yield (Proof), MPa 270 to 850
460

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 960
410
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.7
Embodied Energy, MJ/kg 43
22
Embodied Water, L/kg 150
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 280
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1830
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22 to 42
22
Strength to Weight: Bending, points 21 to 32
20
Thermal Diffusivity, mm2/s 4.2
10
Thermal Shock Resistance, points 14 to 26
18

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.080
0 to 0.18
Chromium (Cr), % 18 to 20
0 to 0.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 66.4 to 73.9
95.1 to 100
Manganese (Mn), % 0 to 2.0
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 8.0 to 10.5
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.1 to 0.16
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.050