MakeItFrom.com
Menu (ESC)

AISI 304N Stainless Steel vs. C33000 Brass

AISI 304N stainless steel belongs to the iron alloys classification, while C33000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 304N stainless steel and the bottom bar is C33000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.1 to 45
7.0 to 60
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 420 to 700
240 to 300
Tensile Strength: Ultimate (UTS), MPa 620 to 1180
320 to 520
Tensile Strength: Yield (Proof), MPa 270 to 850
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 960
130
Melting Completion (Liquidus), °C 1420
940
Melting Onset (Solidus), °C 1380
900
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 15
24
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 43
45
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 280
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1830
60 to 950
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22 to 42
11 to 18
Strength to Weight: Bending, points 21 to 32
13 to 18
Thermal Diffusivity, mm2/s 4.2
37
Thermal Shock Resistance, points 14 to 26
11 to 17

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
65 to 68
Iron (Fe), % 66.4 to 73.9
0 to 0.070
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
30.8 to 34.8
Residuals, % 0
0 to 0.4