MakeItFrom.com
Menu (ESC)

AISI 305 Stainless Steel vs. B535.0 Aluminum

AISI 305 stainless steel belongs to the iron alloys classification, while B535.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 220
65
Elastic (Young's, Tensile) Modulus, GPa 200
66
Elongation at Break, % 34 to 45
10
Fatigue Strength, MPa 210 to 280
62
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 400 to 470
210
Tensile Strength: Ultimate (UTS), MPa 580 to 710
260
Tensile Strength: Yield (Proof), MPa 230 to 350
130

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 540
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 16
96
Thermal Expansion, µm/m-K 17
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
82

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.2
9.4
Embodied Energy, MJ/kg 45
160
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 210
22
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 320
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 20 to 25
28
Strength to Weight: Bending, points 20 to 23
35
Thermal Diffusivity, mm2/s 4.2
40
Thermal Shock Resistance, points 13 to 15
11

Alloy Composition

Aluminum (Al), % 0
91.7 to 93.4
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 65.1 to 72.5
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 2.0
0 to 0.050
Nickel (Ni), % 10.5 to 13
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15