MakeItFrom.com
Menu (ESC)

AISI 305 Stainless Steel vs. Grade 34 Titanium

AISI 305 stainless steel belongs to the iron alloys classification, while grade 34 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is grade 34 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 45
20
Fatigue Strength, MPa 210 to 280
310
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 400 to 470
320
Tensile Strength: Ultimate (UTS), MPa 580 to 710
510
Tensile Strength: Yield (Proof), MPa 230 to 350
450

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 540
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
55
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.2
33
Embodied Energy, MJ/kg 45
530
Embodied Water, L/kg 150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 210
100
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 320
960
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 20 to 25
31
Strength to Weight: Bending, points 20 to 23
31
Thermal Diffusivity, mm2/s 4.2
8.4
Thermal Shock Resistance, points 13 to 15
39

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.080
Chromium (Cr), % 17 to 19
0.1 to 0.2
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 65.1 to 72.5
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 10.5 to 13
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.010 to 0.020
Phosphorus (P), % 0 to 0.045
0
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98 to 99.52
Residuals, % 0
0 to 0.4