AISI 305 Stainless Steel vs. Grade CU5MCuC Nickel
AISI 305 stainless steel belongs to the iron alloys classification, while grade CU5MCuC nickel belongs to the nickel alloys. They have 61% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.
For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is grade CU5MCuC nickel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
200 |
Elongation at Break, % | 34 to 45 | |
22 |
Fatigue Strength, MPa | 210 to 280 | |
170 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 77 | |
77 |
Tensile Strength: Ultimate (UTS), MPa | 580 to 710 | |
580 |
Tensile Strength: Yield (Proof), MPa | 230 to 350 | |
270 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
310 |
Maximum Temperature: Mechanical, °C | 540 | |
980 |
Melting Completion (Liquidus), °C | 1450 | |
1420 |
Melting Onset (Solidus), °C | 1400 | |
1370 |
Specific Heat Capacity, J/kg-K | 480 | |
460 |
Thermal Expansion, µm/m-K | 17 | |
13 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 16 | |
45 |
Density, g/cm3 | 7.8 | |
8.2 |
Embodied Carbon, kg CO2/kg material | 3.2 | |
7.7 |
Embodied Energy, MJ/kg | 45 | |
110 |
Embodied Water, L/kg | 150 | |
230 |
Common Calculations
PREN (Pitting Resistance) | 18 | |
31 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 200 to 210 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 130 to 320 | |
190 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 20 to 25 | |
20 |
Strength to Weight: Bending, points | 20 to 23 | |
19 |
Thermal Shock Resistance, points | 13 to 15 | |
16 |
Alloy Composition
Carbon (C), % | 0 to 0.12 | |
0 to 0.050 |
Chromium (Cr), % | 17 to 19 | |
19.5 to 23.5 |
Copper (Cu), % | 0 | |
1.5 to 3.5 |
Iron (Fe), % | 65.1 to 72.5 | |
22.2 to 37.9 |
Manganese (Mn), % | 0 to 2.0 | |
0 to 1.0 |
Molybdenum (Mo), % | 0 | |
2.5 to 3.5 |
Nickel (Ni), % | 10.5 to 13 | |
38 to 44 |
Niobium (Nb), % | 0 | |
0.6 to 1.2 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.030 |
Silicon (Si), % | 0 to 0.75 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.030 |