MakeItFrom.com
Menu (ESC)

AISI 305 Stainless Steel vs. C47000 Brass

AISI 305 stainless steel belongs to the iron alloys classification, while C47000 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is C47000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34 to 45
36
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 580 to 710
380
Tensile Strength: Yield (Proof), MPa 230 to 350
150

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 540
120
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 210
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 320
100
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20 to 25
13
Strength to Weight: Bending, points 20 to 23
15
Thermal Diffusivity, mm2/s 4.2
38
Thermal Shock Resistance, points 13 to 15
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
57 to 61
Iron (Fe), % 65.1 to 72.5
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 10.5 to 13
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.25 to 1.0
Zinc (Zn), % 0
37.5 to 42.8
Residuals, % 0
0 to 0.4