MakeItFrom.com
Menu (ESC)

AISI 305 Stainless Steel vs. C65100 Bronze

AISI 305 stainless steel belongs to the iron alloys classification, while C65100 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34 to 45
2.4 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 400 to 470
200 to 350
Tensile Strength: Ultimate (UTS), MPa 580 to 710
280 to 560
Tensile Strength: Yield (Proof), MPa 230 to 350
95 to 440

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 540
200
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
57
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 16
30
Calomel Potential, mV -70
-280
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 45
41
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 210
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 320
39 to 820
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20 to 25
8.7 to 18
Strength to Weight: Bending, points 20 to 23
11 to 17
Thermal Diffusivity, mm2/s 4.2
16
Thermal Shock Resistance, points 13 to 15
9.5 to 19

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
94.5 to 99.2
Iron (Fe), % 65.1 to 72.5
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.7
Nickel (Ni), % 10.5 to 13
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.8 to 2.0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5