MakeItFrom.com
Menu (ESC)

AISI 305 Stainless Steel vs. C85500 Brass

AISI 305 stainless steel belongs to the iron alloys classification, while C85500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is C85500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 220
85
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34 to 45
40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 580 to 710
410
Tensile Strength: Yield (Proof), MPa 230 to 350
160

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 540
120
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 210
130
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 320
120
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20 to 25
14
Strength to Weight: Bending, points 20 to 23
15
Thermal Diffusivity, mm2/s 4.2
38
Thermal Shock Resistance, points 13 to 15
14

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 65.1 to 72.5
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.2
Nickel (Ni), % 10.5 to 13
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
35.1 to 41
Residuals, % 0
0 to 0.9