MakeItFrom.com
Menu (ESC)

AISI 305 Stainless Steel vs. C95520 Bronze

AISI 305 stainless steel belongs to the iron alloys classification, while C95520 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 220
280
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34 to 45
2.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 580 to 710
970
Tensile Strength: Yield (Proof), MPa 230 to 350
530

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 540
240
Melting Completion (Liquidus), °C 1450
1070
Melting Onset (Solidus), °C 1400
1020
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 16
29
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.2
3.6
Embodied Energy, MJ/kg 45
58
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 210
21
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 320
1210
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20 to 25
33
Strength to Weight: Bending, points 20 to 23
27
Thermal Diffusivity, mm2/s 4.2
11
Thermal Shock Resistance, points 13 to 15
33

Alloy Composition

Aluminum (Al), % 0
10.5 to 11.5
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
74.5 to 81.3
Iron (Fe), % 65.1 to 72.5
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 2.0
0 to 1.5
Nickel (Ni), % 10.5 to 13
4.2 to 6.0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5