MakeItFrom.com
Menu (ESC)

AISI 305 Stainless Steel vs. N08925 Stainless Steel

Both AISI 305 stainless steel and N08925 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is N08925 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34 to 45
45
Fatigue Strength, MPa 210 to 280
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
80
Shear Strength, MPa 400 to 470
470
Tensile Strength: Ultimate (UTS), MPa 580 to 710
680
Tensile Strength: Yield (Proof), MPa 230 to 350
340

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
420
Maximum Temperature: Mechanical, °C 540
1100
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 16
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 16
33
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.2
6.2
Embodied Energy, MJ/kg 45
84
Embodied Water, L/kg 150
200

Common Calculations

PREN (Pitting Resistance) 18
44
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 210
250
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 320
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20 to 25
23
Strength to Weight: Bending, points 20 to 23
21
Thermal Diffusivity, mm2/s 4.2
3.5
Thermal Shock Resistance, points 13 to 15
15

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.020
Chromium (Cr), % 17 to 19
19 to 21
Copper (Cu), % 0
0.8 to 1.5
Iron (Fe), % 65.1 to 72.5
42.7 to 50.1
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 10.5 to 13
24 to 26
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030