MakeItFrom.com
Menu (ESC)

AISI 305 Stainless Steel vs. S31060 Stainless Steel

Both AISI 305 stainless steel and S31060 stainless steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 220
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34 to 45
46
Fatigue Strength, MPa 210 to 280
290
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
78
Shear Strength, MPa 400 to 470
480
Tensile Strength: Ultimate (UTS), MPa 580 to 710
680
Tensile Strength: Yield (Proof), MPa 230 to 350
310

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
440
Maximum Temperature: Mechanical, °C 540
1080
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 16
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.4
Embodied Energy, MJ/kg 45
48
Embodied Water, L/kg 150
170

Common Calculations

PREN (Pitting Resistance) 18
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 210
260
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 320
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20 to 25
24
Strength to Weight: Bending, points 20 to 23
22
Thermal Diffusivity, mm2/s 4.2
4.0
Thermal Shock Resistance, points 13 to 15
15

Alloy Composition

Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.12
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 17 to 19
22 to 24
Iron (Fe), % 65.1 to 72.5
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 10.5 to 13
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030