MakeItFrom.com
Menu (ESC)

AISI 305 Stainless Steel vs. S33425 Stainless Steel

Both AISI 305 stainless steel and S33425 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is S33425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 220
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34 to 45
45
Fatigue Strength, MPa 210 to 280
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
79
Shear Strength, MPa 400 to 470
400
Tensile Strength: Ultimate (UTS), MPa 580 to 710
580
Tensile Strength: Yield (Proof), MPa 230 to 350
230

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
500
Maximum Temperature: Mechanical, °C 540
1100
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 16
27
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
5.1
Embodied Energy, MJ/kg 45
71
Embodied Water, L/kg 150
190

Common Calculations

PREN (Pitting Resistance) 18
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 210
210
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 320
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20 to 25
20
Strength to Weight: Bending, points 20 to 23
19
Thermal Diffusivity, mm2/s 4.2
3.7
Thermal Shock Resistance, points 13 to 15
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.12
0 to 0.080
Chromium (Cr), % 17 to 19
21 to 23
Iron (Fe), % 65.1 to 72.5
47.2 to 56.7
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 10.5 to 13
20 to 23
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0.15 to 0.6