AISI 305 Stainless Steel vs. S45500 Stainless Steel
Both AISI 305 stainless steel and S45500 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.
For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is S45500 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 170 to 220 | |
280 to 500 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 34 to 45 | |
3.4 to 11 |
Fatigue Strength, MPa | 210 to 280 | |
570 to 890 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 77 | |
75 |
Shear Strength, MPa | 400 to 470 | |
790 to 1090 |
Tensile Strength: Ultimate (UTS), MPa | 580 to 710 | |
1370 to 1850 |
Tensile Strength: Yield (Proof), MPa | 230 to 350 | |
1240 to 1700 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
270 |
Maximum Temperature: Corrosion, °C | 410 | |
620 |
Maximum Temperature: Mechanical, °C | 540 | |
760 |
Melting Completion (Liquidus), °C | 1450 | |
1440 |
Melting Onset (Solidus), °C | 1400 | |
1400 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Expansion, µm/m-K | 17 | |
11 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 16 | |
17 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 3.2 | |
3.8 |
Embodied Energy, MJ/kg | 45 | |
57 |
Embodied Water, L/kg | 150 | |
120 |
Common Calculations
PREN (Pitting Resistance) | 18 | |
13 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 200 to 210 | |
45 to 190 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 20 to 25 | |
48 to 65 |
Strength to Weight: Bending, points | 20 to 23 | |
35 to 42 |
Thermal Shock Resistance, points | 13 to 15 | |
48 to 64 |
Alloy Composition
Carbon (C), % | 0 to 0.12 | |
0 to 0.050 |
Chromium (Cr), % | 17 to 19 | |
11 to 12.5 |
Copper (Cu), % | 0 | |
1.5 to 2.5 |
Iron (Fe), % | 65.1 to 72.5 | |
71.5 to 79.2 |
Manganese (Mn), % | 0 to 2.0 | |
0 to 0.5 |
Molybdenum (Mo), % | 0 | |
0 to 0.5 |
Nickel (Ni), % | 10.5 to 13 | |
7.5 to 9.5 |
Niobium (Nb), % | 0 | |
0 to 0.5 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.75 | |
0 to 0.5 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.030 |
Tantalum (Ta), % | 0 | |
0 to 0.5 |
Titanium (Ti), % | 0 | |
0.8 to 1.4 |