MakeItFrom.com
Menu (ESC)

AISI 308 Stainless Steel vs. AISI 347H Stainless Steel

Both AISI 308 stainless steel and AISI 347H stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is AISI 308 stainless steel and the bottom bar is AISI 347H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
39
Fatigue Strength, MPa 210
200
Poisson's Ratio 0.28
0.28
Reduction in Area, % 57
51
Rockwell B Hardness 76
81
Shear Modulus, GPa 78
77
Shear Strength, MPa 410
400
Tensile Strength: Ultimate (UTS), MPa 590
580
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 420
480
Maximum Temperature: Mechanical, °C 990
940
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 17
19
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.6
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 20
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.1
4.2
Thermal Shock Resistance, points 13
13

Alloy Composition

Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 19 to 21
17 to 19
Iron (Fe), % 64.1 to 71
64.1 to 74
Manganese (Mn), % 0 to 2.0
0 to 2.0
Nickel (Ni), % 10 to 12
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030