MakeItFrom.com
Menu (ESC)

AISI 308 Stainless Steel vs. EN AC-48100 Aluminum

AISI 308 stainless steel belongs to the iron alloys classification, while EN AC-48100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 308 stainless steel and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
100 to 140
Elastic (Young's, Tensile) Modulus, GPa 200
76
Elongation at Break, % 45
1.1
Fatigue Strength, MPa 210
120 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
29
Tensile Strength: Ultimate (UTS), MPa 590
240 to 330
Tensile Strength: Yield (Proof), MPa 230
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 290
640
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1420
580
Melting Onset (Solidus), °C 1380
470
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
87

Otherwise Unclassified Properties

Base Metal Price, % relative 17
11
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 3.2
7.3
Embodied Energy, MJ/kg 46
130
Embodied Water, L/kg 150
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 140
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 21
24 to 33
Strength to Weight: Bending, points 20
31 to 38
Thermal Diffusivity, mm2/s 4.1
55
Thermal Shock Resistance, points 13
11 to 16

Alloy Composition

Aluminum (Al), % 0
72.1 to 79.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 64.1 to 71
0 to 1.3
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 10 to 12
0 to 0.3
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
16 to 18
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.25