MakeItFrom.com
Menu (ESC)

AISI 308L Stainless Steel vs. 512.0 Aluminum

AISI 308L stainless steel belongs to the iron alloys classification, while 512.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 308L stainless steel and the bottom bar is 512.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
50
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
2.0
Fatigue Strength, MPa 180
58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 580
130
Tensile Strength: Yield (Proof), MPa 230
83

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1420
630
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.2
8.8
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 160
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 140
50
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 21
14
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.1
60
Thermal Shock Resistance, points 13
6.1

Alloy Composition

Aluminum (Al), % 0
90.6 to 95.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 19.5 to 22
0 to 0.25
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 63.8 to 70.5
0 to 0.6
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 1.0 to 2.5
0 to 0.8
Nickel (Ni), % 9.0 to 11
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.25 to 0.6
1.4 to 2.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15