MakeItFrom.com
Menu (ESC)

AISI 308L Stainless Steel vs. EN 1.4988 Stainless Steel

Both AISI 308L stainless steel and EN 1.4988 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 308L stainless steel and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
34
Fatigue Strength, MPa 180
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 380
430
Tensile Strength: Ultimate (UTS), MPa 580
640
Tensile Strength: Yield (Proof), MPa 230
290

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 430
520
Maximum Temperature: Mechanical, °C 1010
920
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
6.0
Embodied Energy, MJ/kg 45
89
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 21
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 13
14

Alloy Composition

Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 19.5 to 22
15.5 to 17.5
Iron (Fe), % 63.8 to 70.5
62.1 to 69.5
Manganese (Mn), % 1.0 to 2.5
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 9.0 to 11
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0.25 to 0.6
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0.6 to 0.85