MakeItFrom.com
Menu (ESC)

AISI 309 Stainless Steel vs. C16200 Copper

AISI 309 stainless steel belongs to the iron alloys classification, while C16200 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 309 stainless steel and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34 to 47
2.0 to 56
Fatigue Strength, MPa 250 to 280
100 to 210
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 420 to 470
190 to 390
Tensile Strength: Ultimate (UTS), MPa 600 to 710
240 to 550
Tensile Strength: Yield (Proof), MPa 260 to 350
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 980
370
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
360
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
90
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
90

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 3.6
2.6
Embodied Energy, MJ/kg 51
41
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 230
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
10 to 970
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 25
7.4 to 17
Strength to Weight: Bending, points 20 to 23
9.6 to 17
Thermal Diffusivity, mm2/s 4.3
100
Thermal Shock Resistance, points 14 to 16
8.7 to 20

Alloy Composition

Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
98.6 to 99.3
Iron (Fe), % 58 to 66
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 12 to 15
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0