MakeItFrom.com
Menu (ESC)

AISI 309 Stainless Steel vs. C86500 Bronze

AISI 309 stainless steel belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 309 stainless steel and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 47
25
Poisson's Ratio 0.27
0.3
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 600 to 710
530
Tensile Strength: Yield (Proof), MPa 260 to 350
190

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1450
880
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
86
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
25

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 51
48
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 230
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
180
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 25
19
Strength to Weight: Bending, points 20 to 23
18
Thermal Diffusivity, mm2/s 4.3
28
Thermal Shock Resistance, points 14 to 16
17

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 58 to 66
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 0 to 2.0
0.1 to 1.5
Nickel (Ni), % 12 to 15
0 to 1.0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0