MakeItFrom.com
Menu (ESC)

AISI 309 Stainless Steel vs. ZE41A Magnesium

AISI 309 stainless steel belongs to the iron alloys classification, while ZE41A magnesium belongs to the magnesium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 309 stainless steel and the bottom bar is ZE41A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 210
63
Elastic (Young's, Tensile) Modulus, GPa 200
45
Elongation at Break, % 34 to 47
3.3
Fatigue Strength, MPa 250 to 280
98
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
18
Shear Strength, MPa 420 to 470
150
Tensile Strength: Ultimate (UTS), MPa 600 to 710
210
Tensile Strength: Yield (Proof), MPa 260 to 350
140

Thermal Properties

Latent Heat of Fusion, J/g 290
330
Maximum Temperature: Mechanical, °C 980
150
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
540
Specific Heat Capacity, J/kg-K 480
970
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 15
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 19
18
Density, g/cm3 7.8
1.9
Embodied Carbon, kg CO2/kg material 3.6
24
Embodied Energy, MJ/kg 51
170
Embodied Water, L/kg 170
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 230
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
63
Strength to Weight: Axial, points 21 to 25
31
Strength to Weight: Bending, points 20 to 23
41
Thermal Diffusivity, mm2/s 4.3
59
Thermal Shock Resistance, points 14 to 16
12

Alloy Composition

Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 58 to 66
0
Magnesium (Mg), % 0
91.7 to 95.4
Manganese (Mn), % 0 to 2.0
0 to 0.15
Nickel (Ni), % 12 to 15
0 to 0.010
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Unspecified Rare Earths, % 0
0.75 to 1.8
Zinc (Zn), % 0
3.5 to 5.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3