MakeItFrom.com
Menu (ESC)

AISI 309Cb Stainless Steel vs. 2017A Aluminum

AISI 309Cb stainless steel belongs to the iron alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 309Cb stainless steel and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 39
2.2 to 14
Fatigue Strength, MPa 200
92 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 390
120 to 270
Tensile Strength: Ultimate (UTS), MPa 580
200 to 460
Tensile Strength: Yield (Proof), MPa 230
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1090
220
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 4.1
8.2
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 170
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 140
90 to 570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 20
19 to 42
Strength to Weight: Bending, points 20
26 to 44
Thermal Diffusivity, mm2/s 4.0
56
Thermal Shock Resistance, points 13
8.9 to 20

Alloy Composition

Aluminum (Al), % 0
91.3 to 95.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 22 to 24
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 56 to 66
0 to 0.7
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Nickel (Ni), % 12 to 16
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15