MakeItFrom.com
Menu (ESC)

AISI 309Cb Stainless Steel vs. 5059 Aluminum

AISI 309Cb stainless steel belongs to the iron alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 309Cb stainless steel and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 39
11 to 25
Fatigue Strength, MPa 200
170 to 240
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 390
220 to 250
Tensile Strength: Ultimate (UTS), MPa 580
350 to 410
Tensile Strength: Yield (Proof), MPa 230
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Corrosion, °C 510
65
Maximum Temperature: Mechanical, °C 1090
210
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
95

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.1
9.1
Embodied Energy, MJ/kg 59
160
Embodied Water, L/kg 170
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 140
220 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 20
36 to 42
Strength to Weight: Bending, points 20
41 to 45
Thermal Diffusivity, mm2/s 4.0
44
Thermal Shock Resistance, points 13
16 to 18

Alloy Composition

Aluminum (Al), % 0
89.9 to 94
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 22 to 24
0 to 0.25
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 56 to 66
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0 to 2.0
0.6 to 1.2
Nickel (Ni), % 12 to 16
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.45
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15