MakeItFrom.com
Menu (ESC)

AISI 309Cb Stainless Steel vs. AISI 415 Stainless Steel

Both AISI 309Cb stainless steel and AISI 415 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 309Cb stainless steel and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
17
Fatigue Strength, MPa 200
430
Poisson's Ratio 0.28
0.28
Reduction in Area, % 46
50
Shear Modulus, GPa 78
76
Shear Strength, MPa 390
550
Tensile Strength: Ultimate (UTS), MPa 580
900
Tensile Strength: Yield (Proof), MPa 230
700

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 510
390
Maximum Temperature: Mechanical, °C 1090
780
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
24
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.1
2.5
Embodied Energy, MJ/kg 59
35
Embodied Water, L/kg 170
110

Common Calculations

PREN (Pitting Resistance) 23
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
140
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
32
Strength to Weight: Bending, points 20
26
Thermal Diffusivity, mm2/s 4.0
6.4
Thermal Shock Resistance, points 13
33

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 22 to 24
11.5 to 14
Iron (Fe), % 56 to 66
77.8 to 84
Manganese (Mn), % 0 to 2.0
0.5 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 12 to 16
3.5 to 5.5
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030