MakeItFrom.com
Menu (ESC)

AISI 309Cb Stainless Steel vs. EN 2.4952 Nickel

AISI 309Cb stainless steel belongs to the iron alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 309Cb stainless steel and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
17
Fatigue Strength, MPa 200
370
Poisson's Ratio 0.28
0.29
Reduction in Area, % 46
14
Shear Modulus, GPa 78
74
Shear Strength, MPa 390
700
Tensile Strength: Ultimate (UTS), MPa 580
1150
Tensile Strength: Yield (Proof), MPa 230
670

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 1090
980
Melting Completion (Liquidus), °C 1420
1350
Melting Onset (Solidus), °C 1380
1300
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
55
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 4.1
9.8
Embodied Energy, MJ/kg 59
140
Embodied Water, L/kg 170
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
170
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 20
38
Strength to Weight: Bending, points 20
29
Thermal Diffusivity, mm2/s 4.0
3.1
Thermal Shock Resistance, points 13
33

Alloy Composition

Aluminum (Al), % 0
1.0 to 1.8
Boron (B), % 0
0 to 0.0080
Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 22 to 24
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 56 to 66
0 to 1.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 12 to 16
65 to 79.2
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
1.8 to 2.7