MakeItFrom.com
Menu (ESC)

AISI 309Cb Stainless Steel vs. C85500 Brass

AISI 309Cb stainless steel belongs to the iron alloys classification, while C85500 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 309Cb stainless steel and the bottom bar is C85500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
85
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 39
40
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 84
55
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 580
410
Tensile Strength: Yield (Proof), MPa 230
160

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1090
120
Melting Completion (Liquidus), °C 1420
900
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 23
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 4.1
2.7
Embodied Energy, MJ/kg 59
46
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140
120
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
14
Strength to Weight: Bending, points 20
15
Thermal Diffusivity, mm2/s 4.0
38
Thermal Shock Resistance, points 13
14

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 56 to 66
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.2
Nickel (Ni), % 12 to 16
0 to 0.2
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
35.1 to 41
Residuals, % 0
0 to 0.9