MakeItFrom.com
Menu (ESC)

AISI 309Cb Stainless Steel vs. C86700 Bronze

AISI 309Cb stainless steel belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 309Cb stainless steel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 580
630
Tensile Strength: Yield (Proof), MPa 230
250

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1090
130
Melting Completion (Liquidus), °C 1420
880
Melting Onset (Solidus), °C 1380
860
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
89
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
19

Otherwise Unclassified Properties

Base Metal Price, % relative 23
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.1
2.9
Embodied Energy, MJ/kg 59
49
Embodied Water, L/kg 170
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
86
Resilience: Unit (Modulus of Resilience), kJ/m3 140
290
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.0
28
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 56 to 66
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 2.0
1.0 to 3.5
Nickel (Ni), % 12 to 16
0 to 1.0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0