MakeItFrom.com
Menu (ESC)

AISI 309Cb Stainless Steel vs. S32050 Stainless Steel

Both AISI 309Cb stainless steel and S32050 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 86% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 309Cb stainless steel and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
220
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 39
46
Fatigue Strength, MPa 200
340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
81
Shear Strength, MPa 390
540
Tensile Strength: Ultimate (UTS), MPa 580
770
Tensile Strength: Yield (Proof), MPa 230
370

Thermal Properties

Latent Heat of Fusion, J/g 300
310
Maximum Temperature: Corrosion, °C 510
440
Maximum Temperature: Mechanical, °C 1090
1100
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 4.1
6.0
Embodied Energy, MJ/kg 59
81
Embodied Water, L/kg 170
210

Common Calculations

PREN (Pitting Resistance) 23
48
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
290
Resilience: Unit (Modulus of Resilience), kJ/m3 140
330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
27
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 4.0
3.3
Thermal Shock Resistance, points 13
17

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 22 to 24
22 to 24
Copper (Cu), % 0
0 to 0.4
Iron (Fe), % 56 to 66
43.1 to 51.8
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 12 to 16
20 to 23
Niobium (Nb), % 0 to 1.1
0
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020